Age, Biography and Wiki

Zvi Bern was born on 17 September, 1960 in Queens, New York, is an American theoretical particle physicist. Discover Zvi Bern's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is he in this year and how he spends money? Also learn how he earned most of networth at the age of 63 years old?

Popular As N/A
Occupation N/A
Age 63 years old
Zodiac Sign Virgo
Born 17 September, 1960
Birthday 17 September
Birthplace Queens, New York
Nationality American

We recommend you to check the complete list of Famous People born on 17 September. He is a member of famous with the age 63 years old group.

Zvi Bern Height, Weight & Measurements

At 63 years old, Zvi Bern height not available right now. We will update Zvi Bern's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Zvi Bern Net Worth

His net worth has been growing significantly in 2023-2024. So, how much is Zvi Bern worth at the age of 63 years old? Zvi Bern’s income source is mostly from being a successful . He is from American. We have estimated Zvi Bern's net worth, money, salary, income, and assets.

Net Worth in 2024 $1 Million - $5 Million
Salary in 2024 Under Review
Net Worth in 2023 Pending
Salary in 2023 Under Review
House Not Available
Cars Not Available
Source of Income

Zvi Bern Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia Zvi Bern Wikipedia
Imdb

Timeline

1960

Zvi Bern (born 17 September 1960) is an American theoretical particle physicist.

He is a professor at University of California, Los Angeles (UCLA).

1986

Bern studied physics and mathematics at the Massachusetts Institute of Technology and earned his doctorate in 1986 in theoretical physics from the University of California, Berkeley under the supervision of Martin Halpern.

Bern's dissertation manuscript can currently be found in Lawrence Berkeley Laboratory's archives, examining "possible nonperturbative continuum regularization schemes for quantum field theory which are based upon the Langevin equation of Parisi and Wu."

Bern developed new methods for the computation of Feynman diagrams that were originally introduced in quantum electrodynamics for the perturbative computation of scattering amplitudes.

In more complicated quantum field theories such as Yang–Mills theory or quantum field theories with gravity, the computer calculation of the perturbative evolution using Feynman diagrams quickly reached its limits due to the exponential growth in diagrams.

1990

The new theoretical developments of the 1990s and 2000s came in time for a renewed interest in extensive calculations in the context of the experiments at the Large Hadron Collider.

Bern and colleagues developed twistor-space methods applied to gauge-theory amplitudes.

Bern and colleagues developed the method of "generalized unitarity as a means for obtaining loop amplitudes from on-shell tree amplitudes".

The method of generalized unitarity provided new insights into the perturbative treatment of N = 8 supergravity and showed that there is a smaller degree of divergence than expected; higher-loop evidence suggested that "N = 8 supergravity has the same degree of divergence as N = 4 super-Yang–Mills theory and is ultraviolet finite in four dimensions".

Prior to this, it had been generally assumed that quantum gravitation from three loops resulted in uncontrollable divergences.

2004

Bern was elected in 2004 a fellow of the American Physical Society.

2010

In 2010, with his students Carrasco and Johansson, Bern found that diagrams for supersymmetric gravitational theories are equivalent to those of two copies of supersymmetric Yang–Mills theories (theories with gluons), which is known as double copy theory.

They used a previously found duality between kinematics and color degrees of freedom.

Instead of previously around 10^{20} terms, only 10 terms had to be evaluated in 3 loops, and correspondingly in 4 loops around 100 terms versus 10^{26} terms, and in 5 loops around 1000 terms versus 10^{31} terms; furthermore, there were no uncontrollable divergences in three and four loops — such uncontrollable divergences were predicted by the majority of experts in the 1980s and constituted one of the reasons for favoring string theory.

2014

In 2014, he received the Sakurai Prize with David A. Kosower and Lance J. Dixon for "pathbreaking contributions to the calculation of perturbative scattering amplitudes, which led to a deeper understanding of quantum field theory and to powerful new tools for computing QCD processes."

In 2023, Bern and his collaborators David A Kosower and Lance J. Dixon were awarded Galileo Galilei Medal from Italy’s Instituto Nazionale di Fisica.

Bern's Erdős number is three.

Currently, Bern is the director of the Mani Lal Bhaumik Institute for Theoretical Physics at UCLA, which aims to "provide an exceptional environment for excellence in theoretical physics research".