Age, Biography and Wiki
Vladimir Drinfeld was born on 14 February, 1954 in Kharkov, Ukrainian SSR, Soviet Union, is a Mathematician. Discover Vladimir Drinfeld's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is he in this year and how he spends money? Also learn how he earned most of networth at the age of 70 years old?
Popular As |
N/A |
Occupation |
N/A |
Age |
70 years old |
Zodiac Sign |
Aquarius |
Born |
14 February, 1954 |
Birthday |
14 February |
Birthplace |
Kharkov, Ukrainian SSR, Soviet Union |
Nationality |
Soviet Union
|
We recommend you to check the complete list of Famous People born on 14 February.
He is a member of famous Mathematician with the age 70 years old group.
Vladimir Drinfeld Height, Weight & Measurements
At 70 years old, Vladimir Drinfeld height not available right now. We will update Vladimir Drinfeld's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Vladimir Drinfeld Net Worth
His net worth has been growing significantly in 2023-2024. So, how much is Vladimir Drinfeld worth at the age of 70 years old? Vladimir Drinfeld’s income source is mostly from being a successful Mathematician. He is from Soviet Union. We have estimated Vladimir Drinfeld's net worth, money, salary, income, and assets.
Net Worth in 2024 |
$1 Million - $5 Million |
Salary in 2024 |
Under Review |
Net Worth in 2023 |
Pending |
Salary in 2023 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
Mathematician |
Vladimir Drinfeld Social Network
Timeline
Vladimir Gershonovich Drinfeld (Володи́мир Ге́ршонович Дрінфельд; Влади́мир Ге́ршонович Дри́нфельд; born February 14, 1954), surname also romanized as Drinfel'd, is a renowned mathematician from the former USSR, who emigrated to the United States and is currently working at the University of Chicago.
Drinfeld's work connected algebraic geometry over finite fields with number theory, especially the theory of automorphic forms, through the notions of elliptic module and the theory of the geometric Langlands correspondence.
Drinfeld introduced the notion of a quantum group (independently discovered by Michio Jimbo at the same time) and made important contributions to mathematical physics, including the ADHM construction of instantons, algebraic formalism of the quantum inverse scattering method, and the Drinfeld–Sokolov reduction in the theory of solitons.
Drinfeld was born into a Jewish mathematical family, in Kharkiv, Ukrainian SSR, Soviet Union in 1954.
The Langlands conjectures, when published in 1967, could be seen as a sort of non-abelian class field theory.
It postulated the existence of a natural one-to-one correspondence between Galois representations and some automorphic forms.
The "naturalness" is guaranteed by the essential coincidence of L-functions.
However, this condition is purely arithmetic and cannot be considered for a general one-dimensional function field in a straightforward way.
Drinfeld pointed out that instead of automorphic forms one can consider automorphic perverse sheaves or automorphic D-modules.
"Automorphicity" of these modules and the Langlands correspondence could be then understood in terms of the action of Hecke operators.
Drinfeld has also worked in mathematical physics.
Drinfeld coined the term "quantum group" in reference to Hopf algebras that are deformations of simple Lie algebras, and connected them to the study of the Yang–Baxter equation, which is a necessary condition for the solvability of statistical mechanical models.
He also generalized Hopf algebras to quasi-Hopf algebras and introduced the study of Drinfeld twists, which can be used to factorize the R-matrix corresponding to the solution of the Yang–Baxter equation associated with a quasitriangular Hopf algebra.
Drinfeld has also collaborated with Alexander Beilinson to rebuild the theory of vertex algebras in a coordinate-free form, which have become increasingly important to two-dimensional conformal field theory, string theory, and the geometric Langlands program.
In 1969, at the age of 15, Drinfeld represented the Soviet Union at the International Mathematics Olympiad in Bucharest, Romania, and won a gold medal with the full score of 40 points.
He was, at the time, the youngest participant to achieve a perfect score, a record that has since been surpassed by only four others including Sergei Konyagin and Noam Elkies.
Drinfeld entered Moscow State University in the same year and graduated from it in 1974.
In 1974, at the age of twenty, Drinfeld announced a proof of the Langlands conjectures for GL2 over a global field of positive characteristic.
In the course of proving the conjectures, Drinfeld introduced a new class of objects that he called "elliptic modules" (now known as Drinfeld modules).
Drinfeld was awarded the Candidate of Sciences degree in 1978 and the Doctor of Sciences degree from the Steklov Institute of Mathematics in 1988.
From 1981 till 1999 he worked at the Verkin Institute for Low Temperature Physics and Engineering (Department of Mathematical Physics).
Later, in 1983, Drinfeld published a short article that expanded the scope of the Langlands conjectures.
He was awarded the Fields Medal in 1990.
He was awarded the Fields Medal in 1990.
Drinfeld moved to the United States in 1999 and has been working at the University of Chicago since January 1999.
Drinfeld and Beilinson published their work in 2004 in a book titled "Chiral Algebras."
In 2016, he was elected to the National Academy of Sciences.
In 2018 he received the Wolf Prize in Mathematics.
In 2023 he was awarded the Shaw Prize in Mathematical Sciences.