Age, Biography and Wiki

LeRoy Apker was born on 11 June, 1915 in Rochester, New York, is an American experimental physicist. Discover LeRoy Apker's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is he in this year and how he spends money? Also learn how he earned most of networth at the age of 55 years old?

Popular As N/A
Occupation N/A
Age 55 years old
Zodiac Sign Gemini
Born 11 June, 1915
Birthday 11 June
Birthplace Rochester, New York
Date of death 5 July, 1970
Died Place Schenectady, New York
Nationality United States

We recommend you to check the complete list of Famous People born on 11 June. He is a member of famous with the age 55 years old group.

LeRoy Apker Height, Weight & Measurements

At 55 years old, LeRoy Apker height not available right now. We will update LeRoy Apker's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

LeRoy Apker Net Worth

His net worth has been growing significantly in 2023-2024. So, how much is LeRoy Apker worth at the age of 55 years old? LeRoy Apker’s income source is mostly from being a successful . He is from United States. We have estimated LeRoy Apker's net worth, money, salary, income, and assets.

Net Worth in 2024 $1 Million - $5 Million
Salary in 2024 Under Review
Net Worth in 2023 Pending
Salary in 2023 Under Review
House Not Available
Cars Not Available
Source of Income

LeRoy Apker Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

1915

Leroy W. Apker (June 11, 1915 – July 5, 1970) was an American experimental physicist.

Along with his colleagues E. A. Taft and Jean Dickey, he studied the photoelectric emission of electrons from semiconductors and discovered the phenomenon of exciton-induced photoemission in potassium iodide.

Born in Rochester, New York on June 11, 1915, Apker attended the University of Rochester, receiving a Bachelor of Arts degree in 1937.

He then commenced graduate studies there under Lee Alvin DuBridge, along with fellow graduate students Ernest Courant, Esther M. Conwell, Robert H. Dicke, and others.

1916

In 1916 Robert Andrews Millikan, while verifying the photoelectric equations of Albert Einstein, had proposed the idea that photoelectrons emitted from semiconductors should behave in a different way than those emitted from other types of matter, and a very similar theory was advanced by Edward Condon in 1938.

1941

He received his Ph.D. in physics in 1941.

Also in 1941, he began working for the General Electric Research Laboratory in Schenectady, New York.

1948

In 1948 Apker, working with E. A. Taft and J. E. Dickey, he completed experiments that confirmed Condon's theory.

The main discovery made was that photoelectrons from some semiconductors moved much slower than photoelectrons from metals with the same work function, an unexpected result which was used to increase understanding of the electronic structure of semiconductors.

Apker was also active in the field of vacuum science.

In 1948 he developed the flash filament method for measuring very low pressures, which was the first widely used method for measuring pressures less than 10^-8 Torr.

In this method, a gas is allowed to adsorb onto a clean tungsten filament for a set amount of time, and the filament is then rapidly heated.

The gas adsorbed onto the filament is released, and the resulting pressure burst can be measured.

Though very time-consuming, the flash filament method was later used for thermal desorption spectroscopy.

Apker followed up his work on the photoelectric effect with an investigation of the photoelectric properties of the alkali halides, particularly potassium iodide.

In potassium iodide, an ionic crystal, some iodide ions can be removed and their vacant places will be filled by electrons.

Called "F-Centers," these defects absorb visible and ultraviolet light, coloring the crystals at photon energies where they are usually transparent.

Additionally, the absorption of visible radiation can free trapped electrons inside the crystal and produce photoconductivity.

Apker found that in addition to visible radiation, near-ultraviolet radiation also produces photoconductitivty.

Deeper into the ultraviolet spectrum, however, potassium iodide has a strong absorption line due to the formation of chargeless particles called excitons.

These excitons transfer energy to the electrons in the F-Centers with remarkably high efficiency, and these excited electrons are excited from the crystals in exciton-induced photoemission.

Apker observed the same sort of behavior in other crystals such as barium oxide.

1955

In 1955, he received the Oliver E. Buckley Condensed Matter Prize of the American Physical Society for his work.

1970

On July 5, 1970, he was found by his wife, suffering from a gunshot wound to the head on the driveway of his home.

He was taken to a hospital in Schenectady, where he later died.

While at General Electric, he began to research the photoelectric effect, which causes matter to emit electrons when exposed to some types of electromagnetic radiation.

1978

In 1978, Apker's wife and colleague Jean Dickey Apker established the Leroy Apker Award of the American Physical Society in memory of Apker.

The award is presented to two college undergraduates each year.