Age, Biography and Wiki

Huai-Dong Cao was born on 8 November, 1959 in China, is a Chinese mathematician. Discover Huai-Dong Cao's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is he in this year and how he spends money? Also learn how he earned most of networth at the age of 64 years old?

Popular As N/A
Occupation N/A
Age 64 years old
Zodiac Sign Scorpio
Born 8 November, 1959
Birthday 8 November
Birthplace N/A
Nationality China

We recommend you to check the complete list of Famous People born on 8 November. He is a member of famous mathematician with the age 64 years old group.

Huai-Dong Cao Height, Weight & Measurements

At 64 years old, Huai-Dong Cao height not available right now. We will update Huai-Dong Cao's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Huai-Dong Cao Net Worth

His net worth has been growing significantly in 2023-2024. So, how much is Huai-Dong Cao worth at the age of 64 years old? Huai-Dong Cao’s income source is mostly from being a successful mathematician. He is from China. We have estimated Huai-Dong Cao's net worth, money, salary, income, and assets.

Net Worth in 2024 $1 Million - $5 Million
Salary in 2024 Under Review
Net Worth in 2023 Pending
Salary in 2023 Under Review
House Not Available
Cars Not Available
Source of Income mathematician

Huai-Dong Cao Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia Huai-Dong Cao Wikipedia
Imdb

Timeline

1959

Huai-Dong Cao (born 8 November 1959, in Jiangsu) is a Chinese–American mathematician.

He is the A. Everett Pitcher Professor of Mathematics at Lehigh University.

He is known for his research contributions to the Ricci flow, a topic in the field of geometric analysis.

1981

Cao received his B.A. from Tsinghua University in 1981 and his Ph.D. from Princeton University in 1986 under the supervision of Shing-Tung Yau.

Cao is a former Associate Director, Institute for Pure and Applied Mathematics (IPAM) at UCLA.

He has held visiting Professorships at MIT, Harvard University, Isaac Newton Institute, Max-Planck Institute, IHES, ETH Zurich, and University of Pisa.

1982

In 1982, Richard S. Hamilton introduced the Ricci flow, proving a dramatic new theorem on the geometry of three-dimensional manifolds.

Cao, who had just begun his Ph.D. studies under Shing-Tung Yau, began to study the Ricci flow in the setting of Kähler manifolds.

1985

In his Ph.D. thesis, published in 1985, he showed that Yau's estimates in the resolution of the Calabi conjecture could be modified to the Kähler-Ricci flow context, to prove a convergence theorem similar to Hamilton's original result.

This also provided a parabolic alternative to Yau's method of continuity in the proof of the Calabi conjecture, although much of the technical work in the proofs is similar.

Following a suggestion of Yau's that the Ricci flow could be used to prove William Thurston's Geometrization conjecture, Hamilton developed the theory over the following two decades.

1995

. The importance of gradient Ricci solitons to the theory of the Ricci flow was first recognized by Hamilton in an influential 1995 article.

In Perelman's analysis, the gradient Ricci solitons where the constant multiple is positive are especially important; these are called gradient shrinking Ricci solitons.

1996

In 1996, Cao studied gradient Kähler-Ricci solitons under the ansatz of rotational symmetry, so that the Ricci soliton equation reduces to ODE analysis.

He showed that for each positive n there is a gradient steady Kähler-Ricci soliton on which is rotationally symmetric, complete, and positively curved.

In the case that n is equal to 1, this recovers Hamilton's cigar soliton.

2002

In 2002 and 2003, Grisha Perelman posted two articles to the arXiv in which he claimed to present a proof, via the Ricci flow, of the geometrization conjecture.

Additionally, he posted a third article in which he gave a shortcut to the proof of the famous Poincaré conjecture, for which the results in the second half of the second paper were unnecessary.

Perelman's papers were immediately recognized as giving notable new results in the theory of Ricci flow, although many mathematicians were unable to fully understand the technical details of some unusually complex or terse sections in his work.

2003

He has been the managing editor of the Journal of Differential Geometry since 2003.

His awards and honors include:

Bruce Kleiner of Yale University and John Lott of the University of Michigan began posting annotations of Perelman's first two papers to the web in 2003, adding to and modifying them over the next several years.

Cao and Zhu said that, in 2003, they had taken notes on that section of Perelman's work from Kleiner and Lott's early postings, and that as an accidental oversight they had failed to realize the source of the notes when writing their article in 2005.

2006

Cao collaborated with Xi-Ping Zhu of Zhongshan University, publishing an exposition in 2006 of Hamilton's work and of Perelman's first two papers, explaining them in the context of the mathematical literature on geometric analysis.

They released a revised version of their article to the arXiv in December 2006.

A gradient Ricci soliton consists of a Riemannian manifold

(M, g)

and a function f on M such that

Ricg + Hessg f

is a constant multiple of g. In the special case that M has a complex structure, g is a Kähler metric, and the gradient of f is a holomorphic vector field, one has a gradient Kähler-Ricci soliton.

Ricci solitons are sometimes considered as generalizations of Einstein metrics, which correspond to the case

2007

John Morgan of Columbia University and Gang Tian of Princeton University published a book in 2007 on Perelman's first and third paper, and the first half of the second paper; they later published a second book on the second half of Perelman's second paper.

The abstract of Cao and Zhu's article states

"In this paper, we give a complete proof of the Poincaré and the geometrization conjectures. This work depends on the accumulative works of many geometric analysts in the past thirty years. This proof should be considered as the crowning achievement of the Hamilton-Perelman theory of Ricci flow."

with introduction beginning

"In this paper, we shall present the Hamilton-Perelman theory of Ricci flow. Based on it, we shall give the first written account of a complete proof of the Poincaré conjecture and the geometrization conjecture of Thurston. While the complete work is an accumulated efforts of many geometric analysts, the major contributors are unquestionably Hamilton and Perelman."

Some observers felt that Cao and Zhu were overstating the value of their paper.

Additionally, it was found that a few pages of Cao and Zhu's article were similar to those in Kleiner and Lott's article, leading to accusations of plagiarism.

2008

The results of this work were published in an academic journal in 2008.

2010

A 2010 survey of Cao's on Ricci solitons has been widely cited.