Age, Biography and Wiki
Carl Wagner was born on 25 May, 1901 in Leipzig, German Empire, is a German chemist (1901–1977). Discover Carl Wagner's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is he in this year and how he spends money? Also learn how he earned most of networth at the age of 76 years old?
Popular As |
N/A |
Occupation |
N/A |
Age |
76 years old |
Zodiac Sign |
Gemini |
Born |
25 May, 1901 |
Birthday |
25 May |
Birthplace |
Leipzig, German Empire |
Date of death |
10 December, 1977 |
Died Place |
Göttingen, Germany |
Nationality |
|
We recommend you to check the complete list of Famous People born on 25 May.
He is a member of famous with the age 76 years old group.
Carl Wagner Height, Weight & Measurements
At 76 years old, Carl Wagner height not available right now. We will update Carl Wagner's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Carl Wagner Net Worth
His net worth has been growing significantly in 2023-2024. So, how much is Carl Wagner worth at the age of 76 years old? Carl Wagner’s income source is mostly from being a successful . He is from . We have estimated Carl Wagner's net worth, money, salary, income, and assets.
Net Worth in 2024 |
$1 Million - $5 Million |
Salary in 2024 |
Under Review |
Net Worth in 2023 |
Pending |
Salary in 2023 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
|
Carl Wagner Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
Carl Wilhelm Wagner (25 May 1901 – 10 December 1977) was a German physical chemist.
He is best known for his pioneering work on solid-state chemistry, where his work on oxidation rate theory, counter diffusion of ions and defect chemistry led to a better understanding of how reactions take place at the atomic level.
Wagner graduated from the University of Munich and gained his PhD at the University of Leipzig in 1924 supervised by Max Le Blanc with a dissertation on the reaction rate in solutions, "Beiträge zur Kenntnis der Reaktionsgeschwindigkeit in Lösungen".
Wagner was interested in the measurement of thermodynamic activities of the components in solid and liquid alloys.
He also researched problems of solid-state chemistry, especially the role of defects of ionic crystals on thermodynamic properties, electrical conductivity and diffusion.
He became a research fellow at the Bodernstein Institute at the University of Berlin.
It was in Berlin that he first became acquainted with Walter H. Schottky who asked him to co-author a book on thermodynamic problems.
Together with Hermann Ulich they published Thermodynamik in 1929, which is still considered a standard reference in the field.
In 1930 he was Privatdozent at the University of Jena and published a notable paper with Schottky, "Theorie der geordneten Mischphasen" (Theory of arranged mixed phases).
His subsequent published papers led to the new concept of chemical disorder now known as defect chemistry.
Wagner spent one year as Visiting Professor of Physical Chemistry, at the University of Hamburg in 1933, before moving to the Technische Universität Darmstadt where he was Professor of Physical Chemistry until 1945.
He proposed an important law of oxidation kinetics in 1933.
In 1936 he published a crucial paper "On the mechanism of the formation of ionic crystals of higher order (double salts, spinels, silicates)", a concept of counter-diffusion of cations, which contributed to the understanding of all diffusion controlled, solid-state reactions.
Over a twenty-year period he produced an important body of work relating to the bulk transport processes in oxides.
Wagner and Schottky proposed the point defect-mediated mechanism of mass transport in solids, Wagner then extended the analysis to electronic defects.
For these works and his subsequent research on local equilibrium, his oxidation rate theory, and the concept of counter diffusion of cations, Wagner is considered by some as the "father of solid state chemistry."
At the end of the Second World War, it was anticipated that German universities and research establishments would undergo a long period of rebuilding.
Wagner was invited to the United States to become a scientific advisor at Fort Bliss, Texas, with other German scientists as part of Operation Paperclip.
He acquired US citizenship at this time.
His work on the thermodynamics of fuels used in V2-rockets was continued by Malcolm Hebb and their techniques are now known as the Hebb-Wagner polarisation method.
Wagner was a professor of metallurgy at MIT from 1949 until 1958.
He then returned to Germany to take up the position of Director of the Max Planck Institute of Physical Chemistry at Göttingen, which was vacant due to the untimely death of Karl Friedrich Bonhoeffer.
In 1961 he produced a paper on the theory of the ageing of precipitates by dissolution-reprecipitation Ostwald ripening, now known as the Lifshitz-Slyozov-Wagner theory, which helps predict the rate of coarsening in alloys.
When NASA tested the theory in space shuttle experiments they discovered the theory did not work as they initially expected and realised the way engineers had been using it needed to be reconsidered.
Wagner officially retired in 1966 but from 1967 to 1977 was a Scientific Member of the Max Planck Institute in Göttingen, continuing to contribute to publications.
Many modern inventions based on solid-state technology and semiconductor fabrication, used in devices such as solar energy conversion have been developed with the aid of Wagner's theories.
Some examples of solid state electrochemical devices are typically, fuel cells, batteries, sensors and membranes.
Wagner died on 10 December 1977 in Göttingen.
His life and achievements were honoured in a Solid State Ionics symposium commemorating his 100th birthday in 2001, where he was described as the father of solid-state chemistry.
Wagner was born in Leipzig, Germany; the son of Dr Julius Wagner who was the Head of Chemistry at the local institute and secretary of the German Bunsen Society of Physical Chemistry.