Age, Biography and Wiki
Jianwei Miao was born on 1 November, 1969 in Hangzhou, China, is a Chinese-American physicist. Discover Jianwei Miao's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is he in this year and how he spends money? Also learn how he earned most of networth at the age of 54 years old?
Popular As |
N/A |
Occupation |
N/A |
Age |
54 years old |
Zodiac Sign |
Scorpio |
Born |
1 November 1969 |
Birthday |
1 November |
Birthplace |
Hangzhou, China |
Nationality |
China
|
We recommend you to check the complete list of Famous People born on 1 November.
He is a member of famous with the age 54 years old group.
Jianwei Miao Height, Weight & Measurements
At 54 years old, Jianwei Miao height not available right now. We will update Jianwei Miao's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Jianwei Miao Net Worth
His net worth has been growing significantly in 2023-2024. So, how much is Jianwei Miao worth at the age of 54 years old? Jianwei Miao’s income source is mostly from being a successful . He is from China. We have estimated Jianwei Miao's net worth, money, salary, income, and assets.
Net Worth in 2024 |
$1 Million - $5 Million |
Salary in 2024 |
Under Review |
Net Worth in 2023 |
Pending |
Salary in 2023 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
|
Jianwei Miao Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
Jianwei (John) Miao is a Professor in the Department of Physics and Astronomy and the California NanoSystems Institute at the University of California, Los Angeles.
Miao received a BS in physics from Hangzhou University (now Zhejiang University) in 1991, and an MS in physics from the Institute of High Energy Physics, Chinese Academy of Sciences in 1994.
He proposed the oversampling ratio concept in 1998, which explains under what conditions the phase problem of non-crystalline specimens can be solved.
He performed the first experiment on extending crystallography to allow structural determination of non-crystalline specimens in 1999, which has been known as coherent diffractive imaging (CDI), lensless imaging, or computational microscopy.
He then moved to the U.S. and received a PhD in physics, an M.S. in computer science, and an advanced graduate certificate in biomedical engineering from the State University of New York at Stony Brook in 1999.
After obtaining his PhD, Miao became a staff scientist in the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory.
In 1999, he conducted the first CDI experiment at the National Synchrotron Light Source, Brookhaven National Laboratory.
CDI methods, such as plane-wave CDI, ptychography (i.e., scanning CDI ) and Bragg CDI, have been broadly implemented using synchrotron radiation, x-ray free electron lasers, high harmonic generation, electron and optical microscopy.
It has also become one of the justifications for the construction of x-ray free electron lasers worldwide.
In 2004, he moved to UCLA as an assistant professor and was promoted to full professor in 2009.
In 2012, Miao applied the CDI method to pioneer atomic electron tomography (AET), enabling the first determination of 3D atomic structures without assuming crystallinity or averaging.
In 2012, Miao applied CDI phase retrieval algorithms to tomography and demonstrated AET at 2.4 Å resolution without assuming crystallinity.
He then applied AET to observe nearly all the atoms in a Pt nanoparticle, and imaged the 3D core structure of edge and screw dislocations at atomic resolution.
In 2015, he determined the 3D coordinates of thousands of individual atoms in a material with a 3D precision of 19 pm and addressed Richard Feynman’s 1959 challenge.
Later, Miao measured the 3D coordinates of more than 23,000 atoms in an FePt nanoparticle, and correlated chemical order/disorder and crystal defects with material properties at the single-atom level.
He has served as the Deputy Director of the STROBE NSF Science and Technology Center since 2016.
Miao pioneered the development of novel imaging methods using x-rays and electrons, and contributed to theory, computation, and experiment.
In 2019, he developed 4D AET to observe crystal nucleation at atomic resolution, showing early stage nucleation results contradict classical nucleation theory.
Miao also demonstrated scanning AET (sAET) to correlate the 3D atomic defects and electronic properties of 2D materials.
In 2021, he determined for the first time the 3D atomic structure of amorphous solids and observed the medium-range order in amorphous materials.