Age, Biography and Wiki

Herbert Zimmermann (neuroscientist) was born on 10 January, 1944 in Chiesch/Chyše, Nazi Germany (modern-day Czech Republic), is a German neuroscientist (born 1944). Discover Herbert Zimmermann (neuroscientist)'s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is he in this year and how he spends money? Also learn how he earned most of networth at the age of 80 years old?

Popular As N/A
Occupation N/A
Age 80 years old
Zodiac Sign Capricorn
Born 10 January 1944
Birthday 10 January
Birthplace Chiesch/Chyše, Nazi Germany (modern-day Czech Republic)
Nationality Czech Republic

We recommend you to check the complete list of Famous People born on 10 January. He is a member of famous with the age 80 years old group.

Herbert Zimmermann (neuroscientist) Height, Weight & Measurements

At 80 years old, Herbert Zimmermann (neuroscientist) height not available right now. We will update Herbert Zimmermann (neuroscientist)'s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Herbert Zimmermann (neuroscientist) Net Worth

His net worth has been growing significantly in 2023-2024. So, how much is Herbert Zimmermann (neuroscientist) worth at the age of 80 years old? Herbert Zimmermann (neuroscientist)’s income source is mostly from being a successful . He is from Czech Republic. We have estimated Herbert Zimmermann (neuroscientist)'s net worth, money, salary, income, and assets.

Net Worth in 2024 $1 Million - $5 Million
Salary in 2024 Under Review
Net Worth in 2023 Pending
Salary in 2023 Under Review
House Not Available
Cars Not Available
Source of Income

Herbert Zimmermann (neuroscientist) Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

1944

Herbert Zimmermann (born 10 January 1944) is a German neuroscientist who pioneered the studies on the biochemical, structural and functional heterogeneity of cholinergic synaptic vesicles from the electric organ of the electric ray Torpedo, and the functional and biochemical characterization of enzymes hydrolyzing extracellular nucleotides.

Herbert Zimmermann was born in Chiesch (now Chyše, Czech Republic).

1964

He studied chemistry and biology at the Ludwig Maximilian University of Munich (1964–69) and obtained his PhD at the University of Regensburg in 1971.

1972

From 1972-73 he continued as postdoctoral fellow at the Department of Biochemistry at the University of Cambridge, UK.

1973

From 1973-79 he was scientist and senior scientist at the Department of Neurochemistry of the Max Planck Institute for Biophysical Chemistry in Göttingen (Germany).

1980

From 1980–83 he held the position of Professor of Neurobiology at the University of Oldenburg (Germany).

1983

In 1983 he was appointed chair and section leader of Neurochemistry at the Goethe University Frankfurt am Main (Germany).

1987

In 1987 he was visiting professor at the Institute of Brain Research of the Medical Faculty of the Tokyo University (Tokyo Daigaku).

1991

From 1991 to 1995 he was elected president of the German Neuroscience Society.

2008

2008 he was elected president of the German Purine Club.

2009

Since 2009 he is president of the Scientific Society at the Johann Wolfgang Goethe-University Frankfurt am Main.

Zimmermann's initial studies in Munich and Regensburg under the supervision of Helmut Altner addressed a circumventricular organ specific for fishes, the saccus vasculosus.

In Cambridge, in the laboratory of Victor P. Whittaker, he began his studies on the dynamics of the synaptic vesicle compartment.

He used the electric ray electric organ that is homologous to the neuromuscular junction as a model system for cholinergic synaptic transmission.

This system permitted parallel electrophysiological stimulation and recording and electron microscopic and in particular biochemical analysis of the outcome of the synaptic activation on the synaptic vesicle compartment.

He showed that nerve stimulation induces both morphological and biochemical heterogeneity of synaptic vesicles.

Vesicles that had gone through at least on cycle of exo- and endocytosis where reduced in size, could be separated by density centrifugation or chromatography on porous glass beads and were preferentially refilled with newly synthesized acetylcholine and ATP.

This was in contrast to the reserve pool of synaptic vesicles that was not yet involved in the transmission process.

The data suggested that synaptic activation induces synaptic vesicle heterogeneity whereby reloaded synaptic vesicles preferentially release newly synthesized acetylcholine and ATP.

They provided a cell biological explanation for a previously unresolved problem in the earlier history of neurotransmission, namely that newly synthesized acetylcholine is preferentially released from stimulated nerve endings.

He further showed that ATP released from the electric nerves is hydrolyzed extracellularly to adenosine that is recycled via a high affinity transport mechanism into the nerve terminals where it is rephosphorylated and taken up in the form of ATP into synaptic vesicles.

Starting from the observation that ATP is hydrolyzed extracellularly he analyzed the biochemical pathways leading to the extracellular breakdown of released nucleotides to their respective nucleosides.

This resulted in the isolation and molecular cloning of the AMP-hydrolyzing enzyme ecto-5'-nucleotidase as well as of a number of the nucleoside triphosphate and diphosphate-hydrolyzing enzymes of the family of the ectonucleoside triphosphate diphosphohydrolases.

He also initiated a new nomenclature for these enzymes and for the ectopyrophosphatase/phosphodiesterases.

More recently he analyzed the proteome of synaptic vesicles and the role of nucleotide signaling in the control of adult neurogenesis, the formation of new neurons in the adult mammalian brain.

2010

After his retirement (2010) he continued as emeritus in the Department of Molecular and Cellular Neurobiology of the Goethe University.