Age, Biography and Wiki
Dana Pe'er was born on 1971, is a Bioinformatician. Discover Dana Pe'er's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is she in this year and how she spends money? Also learn how she earned most of networth at the age of 53 years old?
Popular As |
N/A |
Occupation |
N/A |
Age |
53 years old |
Zodiac Sign |
|
Born |
1971 |
Birthday |
1971 |
Birthplace |
N/A |
Nationality |
|
We recommend you to check the complete list of Famous People born on 1971.
She is a member of famous with the age 53 years old group.
Dana Pe'er Height, Weight & Measurements
At 53 years old, Dana Pe'er height not available right now. We will update Dana Pe'er's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Who Is Dana Pe'er's Husband?
Her husband is Itsik Pe'er
Family |
Parents |
Not Available |
Husband |
Itsik Pe'er |
Sibling |
Not Available |
Children |
Inbar, Carmel |
Dana Pe'er Net Worth
Her net worth has been growing significantly in 2023-2024. So, how much is Dana Pe'er worth at the age of 53 years old? Dana Pe'er’s income source is mostly from being a successful . She is from . We have estimated Dana Pe'er's net worth, money, salary, income, and assets.
Net Worth in 2024 |
$1 Million - $5 Million |
Salary in 2024 |
Under Review |
Net Worth in 2023 |
Pending |
Salary in 2023 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
|
Dana Pe'er Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
Dana Pe'er (born 1971), Chair and Professor in Computational and Systems Biology Program at Sloan Kettering Institute is a researcher in computational systems biology.
A Howard Hughes Medical Institute (HHMI) Investigator since 2021, she was previously a professor at Columbia Department of Biological Sciences.
Pe'er's research focuses on understanding the organization, function and evolution of molecular networks, particularly how genetic variations alter the regulatory network and how these genetic variations can cause cancer.
Pe'er was born in Israel.
Her husband, Itsik Pe'er, is a computational biologist at Columbia University.
Together, they have raised two daughters.
Pe'er received a bachelor's degree in mathematics in 1995, as well as master's in 1999 and PhD degrees in computer science in 2003, from the Hebrew University of Jerusalem.
She earned her master's degree under Avi Widgerson, and carried out her PhD research in the lab of Nir Friedman.
She subsequently performed postdoctoral work with George Church at Harvard.
Her fellowship focused on how genetic variation changes the regulatory network between individuals and how this subsequently manifests in phenotypic diversity.
In 2006, Pe'er established a research group in the Department of Biological Sciences and Systems Biology at Columbia University.
Pe'er's group at Columbia developed computational methods that combine diverse sources of high throughput genomics data, with the aim of developing a holistic view of the cell at a systems level.
Upon accepting the International Society for Computational Biology's Overton Prize in 2014, Pe'er said, "Math is rigorous, and biology is messy, so the trick is to find the pattern in the mess, and machine learning provides a powerful toolbox."
In 2016, Pe'er joined the Sloan Kettering Institute in New York City.
She was selected as a Howard Hughes Medical Institute (HHMI) Investigator in September, 2021.
Pe'er is involved in the Human Cell Atlas as a member of the organizing committee, co-chair of the Analysis Working Group, and member of the Human Lung Cell Atlas initiative, and serves on the scientific advisory board of scverse.
In her PhD work, Pe'er demonstrated that Bayesian networks can describe interactions between thousands of genes, enabling the analysis of data from newly available DNA microarrays, which generate thousands of noisy measurements of gene expression.
The approach has been widely applied to genome-scale sequencing data.
In her postdoctoral work, she used this framework to study protein signaling networks in multivariate flow cytometry data.
At Columbia, Pe'er applied Bayesian networks to integrate different data types for the study of gene regulatory networks, determining how DNA sequence variation alters the regulation of gene expression, with a view towards personalized medicine.
The Pe'er research group has developed a series of methods for high-throughput single-cell data analysis, initially to address a new high-dimensional data type derived from mass cytometry, which quantifies a few dozen proteins per cell for millions of cells at a time.
They introduced the application of non-linear dimensionality reduction by t-distributed stochastic neighbor embedding (t-SNE) to visualize high-dimensional single-cell RNA sequencing data, and the use of a nearest neighbors graph to represent the data manifold of RNA-defined cell states.
The Pe'er group used this formalization to identify discrete cell types or cell states by applying the Louvain community detection method to cluster data, and demonstrated that cells can be ordered along differentiation trajectories from individual samples, due to the asynchrony of cells found in tissue samples.
By modeling trajectories as a Markov process, they showed that cells can be assigned probabilities for reaching any given terminal fate along a trajectory.
In 2020, the Pe'er and Fabian Theis groups presented CellRank, an algorithm that uncovers cellular dynamics by combining trajectories based on cell-cell similarity with local RNA velocity information, which identifies nascent transcriptional states by the proportion of spliced-to-unspliced RNA transcripts.
Pe'er applies these methods to model biological questions around cellular plasticity and single-cell phenotypic variation in cancer, developmental biology, and immunology, including tumor microenvironments, metastasis and responses to treatments such as immunotherapy.
"We are beginning to understand that plasticity is a key hallmark of cancer," said Dr. Pe'er.
"It is the cancer cell's plasticity that allows it to make such a switch to survive."